XPA gene

XPA, DNA damage recognition and repair factor

Normal Function

The XPA gene provides instructions for making a protein that is involved in repairing damaged DNA. DNA can be damaged by ultraviolet (UV) rays from the sun and by toxic chemicals, radiation, and unstable molecules called free radicals.

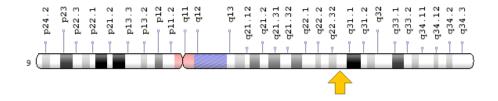
DNA damage occurs frequently, but normal cells are usually able to fix it before it can cause problems. One of the major mechanisms that cells use to fix DNA is known as nucleotide excision repair (NER). As part of this repair mechanism, the XPA protein helps verify DNA damage and stabilize the DNA as it is repaired. The XPA protein attaches (binds) to areas of damaged DNA, where it interacts with many other proteins as part of a large complex. Proteins in this complex unwind the section of DNA where the damage has occurred, snip out (excise) the abnormal section, and replace the damaged area with the correct DNA.

Health Conditions Related to Genetic Changes

xeroderma pigmentosum

At least 25 mutations in the *XPA* gene have been found to cause xeroderma pigmentosum. Mutations in this gene are responsible for a very severe form of the disorder that is more common in the Japanese population than in other populations. Most Japanese people with xeroderma pigmentosum have the same *XPA* gene mutation, which is written as IVS3AS, G>C. This mutation prevents cells from producing any functional XPA protein. Other *XPA* gene mutations, which have been reported in Japan and elsewhere, result in the production of a defective version of the XPA protein or greatly reduce the amount of this protein that is made in cells.

A partial or total loss of the XPA protein prevents cells from repairing DNA damage normally. As a result, abnormalities accumulate in DNA, causing cells to malfunction and eventually to become cancerous or die. These problems with DNA repair cause people with xeroderma pigmentosum to be extremely sensitive to UV rays from sunlight. When UV rays damage genes that control cell growth and division, cells can grow too fast and in an uncontrolled way. As a result, people with xeroderma pigmentosum have a greatly increased risk of developing cancer. These cancers occur most frequently in areas of the body that are exposed to the sun, such as the skin and eyes.


When xeroderma pigmentosum is caused by XPA gene mutations, it is often associated with progressive neurological abnormalities. These nervous system

problems include hearing loss, poor coordination, difficulty walking, movement problems, loss of intellectual function, difficulty swallowing and talking, and seizures. The neurological abnormalities are thought to result from a buildup of DNA damage, although the brain is not exposed to UV rays. Researchers suspect that other factors damage DNA in nerve cells. It is unclear why some people with xeroderma pigmentosum develop neurological abnormalities and others do not.

Chromosomal Location

Cytogenetic Location: 9q22.33, which is the long (q) arm of chromosome 9 at position 22.33

Molecular Location: base pairs 97,654,398 to 97,697,409 on chromosome 9 (Homo sapiens Annotation Release 108, GRCh38.p7) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- xeroderma pigmentosum, complementation group A
- XP1
- XPA HUMAN
- XPAC

Additional Information & Resources

Educational Resources

- Cancer Medicine (sixth edition, 2003): Steps in Nucleotide Excision Repair (image) https://www.ncbi.nlm.nih.gov/books/NBK13017/?rendertype=figure&id=A5537
- Molecular Biology of the Cell (fourth edition, 2002): DNA Repair https://www.ncbi.nlm.nih.gov/books/NBK26879/
- Xeroderma Pigmentosum Society, Inc.: DNA Repair Explained in Simple Terms https://www.xps.org/single-post/2015/04/08/DNA-Repair-Explained-in-Simple-Terms

GeneReviews

 Xeroderma Pigmentosum https://www.ncbi.nlm.nih.gov/books/NBK1397

Scientific Articles on PubMed

PubMed

https://www.ncbi.nlm.nih.gov/pubmed?term=%28XPA%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

OMIM

 XPA GENE http://omim.org/entry/611153

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology http://atlasgeneticsoncology.org/Genes/XPAID104.html
- ClinVar https://www.ncbi.nlm.nih.gov/clinvar?term=XPA%5Bgene%5D
- HGNC Gene Family: Xeroderma pigmentosum complementation groups http://www.genenames.org/cgi-bin/genefamilies/set/1125
- HGNC Gene Symbol Report http://www.genenames.org/cgi-bin/gene_symbol_report?q=data/ hgnc_data.php&hgnc_id=12814
- NCBI Gene https://www.ncbi.nlm.nih.gov/gene/7507
- UniProt http://www.uniprot.org/uniprot/P23025

Sources for This Summary

- Camenisch U, Nägeli H. XPA gene, its product and biological roles. Adv Exp Med Biol. 2008;637: 28-38. Review.
 - Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19181108
- Cleaver JE, States JC. The DNA damage-recognition problem in human and other eukaryotic cells: the XPA damage binding protein. Biochem J. 1997 Nov 15;328 (Pt 1):1-12. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9359827
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1218880/

- Cleaver JE, Thompson LH, Richardson AS, States JC. A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Hum Mutat. 1999;14(1):9-22. Review.
 - Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10447254
- Hirai Y, Kodama Y, Moriwaki S, Noda A, Cullings HM, Macphee DG, Kodama K, Mabuchi K, Kraemer KH, Land CE, Nakamura N. Heterozygous individuals bearing a founder mutation in the XPA DNA repair gene comprise nearly 1% of the Japanese population. Mutat Res. 2006 Oct 10; 601(1-2):171-8. Epub 2006 Aug 14.
 - Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16905156
- Jones CJ, Wood RD. Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry. 1993 Nov 16;32(45):12096-104.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8218288
- Satokata I, Iwai K, Matsuda T, Okada Y, Tanaka K. Genomic characterization of the human DNA excision repair-controlling gene XPAC. Gene. 1993 Dec 22;136(1-2):345-8.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8294029

Reprinted from Genetics Home Reference:

https://ghr.nlm.nih.gov/gene/XPA

Reviewed: May 2010

Published: March 21, 2017

Lister Hill National Center for Biomedical Communications U.S. National Library of Medicine National Institutes of Health Department of Health & Human Services